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ABSTRACT
This paper addresses the problem of Named Entity Recog-
nition in Query (NERQ), which involves detection of the
named entity in a given query and classification of the named
entity into predefined classes. NERQ is potentially useful in
many applications in web search. The paper proposes tak-
ing a probabilistic approach to the task using query log data
and Latent Dirichlet Allocation. We consider contexts of a
named entity (i.e., the remainders of queries after the named
entity is removed) as words of a document, and classes of the
named entity as topics. The topic model is constructed by a
novel and general learning method referred to as WS-LDA
(Weakly Supervised Latent Dirichlet Allocation), which em-
ploys weakly supervised learning (rather than unsupervised
learning) using partially labeled seed entities. Experimental
results show that the proposed method based on WS-LDA
can accurately perform NERQ, and outperform the baseline
methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

General Terms
Algorithms, Experimentation

Keywords
Named Entity Recognition, Topic Model

1. INTRODUCTION
In this paper we address a novel problem in web search,

namely Named Entity Recognition in Query (NERQ). In
the task given a query we are to detect the named entity
within the query and identify the most likely classes of the
named entity. Classes of named entities can be, for instance,
“Book”, “Movie”, “Game”, and “Music”. Given query “harry
potter walkthrough”, we detect “harry potter” as a named
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entity and assign “Game” to it as the most likely class,
“Movie” and “Book” as less likely classes, and “Music” as
unlikely class. This is because the context “walkthrough”
strongly indicates that “harry potter” here is more likely to
mean the Harry Potter game. (If the query is only “harry
potter”, then “Book” and “Movie” will be more plausible.)

NERQ is essentially useful for many applications in web
search. According to our analysis, about 71% of search
queries contain named entities. Identifying named entities
in queries would help us to understand search intents better,
and therefore provide better search. For example, in rele-
vance search, we can improve ranking by treating named
entity and context separately; in query suggestion, we can
generate more relevant suggestions, e.g. “harry potter walk-
through”→“harry potter cheats” (context in the same class)
or “halo 3 walkthrough” (entity in the same class).

As far as we know, there was no previous work on NERQ.
Traditionally Named Entity Recognition (NER) is mainly
performed on natural language texts [6, 3, 8]. Usually a su-
pervised learning approach is exploited and a set of features
(e.g., whether “Mr.” occurs before the word, or whether the
first letter of words is capitalized) is utilized. However, di-
rect application of exiting NER technologies to NERQ would
not perform well. This is because queries are usually very
short (i.e., 2-3 words on average) and are not necessarily
in standard form (e.g., all letters are in lower case), and
thus the features are not sufficient for performing accurate
NERQ.

In this paper, we propose a new probabilistic approach to
NERQ using query log data. Without loss of generality, a
query having one named entity1 is represented as a triple
(e, t, c), where e denotes named entity, t context of e, and
c class of e. Note that t can be empty (i.e. no context),
e.g. “harry potter”. Then the goal of NERQ here becomes
to find the triple (e, t, c) for a given query q, which has the
largest joint probability Pr(e, t, c). The joint probability is
factorized and then estimated by using query log and LDA.

In the LDA model, contexts of a named entity are repre-
sented as words of a document, classes of the named entity
are represented as topics of the model. The alignment be-
tween model topics and predefined classes needs to be guar-
anteed. To address this problem, we propose a weakly su-
pervised learning method, referred to as WS-LDA (Weakly
Supervised Latent Dirichlet Allocation), which can leverage
the weak supervision from humans.

1
Here we only consider queries which contain single named entities.

When there are multiple entities appearing in a query, our method can
still be applied by viewing the more popular one as “named entity”
and the rest as “context”.



Our approach is in part inspired by the work [19]. They
proposed a method for acquiring named entities from query
log using templates. There are some differences between
their work and ours. Our focus is NERQ while theirs is
offline query log mining (there is no online prediction in
their case). We employ a probabilistic model, while they
take a deterministic approach in the sense that they assume
that each named entity can only belong to one class.

Our contribution in this paper lies in the following points.
(1) We have formalized the problem of NERQ. (2) We have
proposed a novel method for conducting NERQ. (3) We have
developed a new topic modeling method with weakly super-
vised learning, i.e. WS-LDA.

The rest of the paper is organized as follows. Section 2
introduces related work. Section 3 defines the problem of
NERQ and proposes a probabilistic approach to the task.
Section 4 describes WS-LDA in details. Experimental re-
sults are presented in Section 5. Conclusions are made in
the last section.

2. RELATED WORK
Needless to say, query processing is critically important

for web search. Previous work mainly focused on query seg-
mentation, query parsing, query classification, and query log
mining. As far as we know, however, there was no work on
Named Entity Recognition in Query (NERQ) as defined in
this paper.

Query segmentation separates a query into a number of
units [20, 2, 25]. However, it does not identify named entities
from units and also does not assign class labels to units. Syn-
tactic parsing focuses on identifying linguistic structure of
query [9, 12, 13]. Query classification falls into two groups:
(1) classification according to search intent, such as informa-
tional, navigational or transactional [7, 21, 16]; (2) classifi-
cation according to semantics of query, such as “Shopping”
or “Living” [24, 1]. In query classification, the whole query
is classified and there is no further analysis on the internal
structure of query.

Query log mining is also related to our work, particularly
that by Paşca [19, 18, 23]. Paşca proposes a method for
acquiring named entities in a class from query log. A query
is supposed to consist of an instance (named entity) and a
template (context). A bootstrapping method is employed
to mine instances of a class by utilizing the templates of the
class, starting with a small number of seed instances. Their
approach is deterministic and it can only work well in the
cases in which a named entity belongs to a single class.

Named Entity Recognition is usually performed on text
documents. Early work on NER was based on rules [11].
Recently machine learning techniques have been applied to
NER, including supervised machine learning [6, 3], semi-
supervised learning [8] and unsupervised learning [10]. Fea-
tures are utilized in these approaches. However, directly ap-
plying previous NER approaches to NERQ would not work
well, because queries are usually short and not well formed.

Related work also includes topic modeling. Many topic
models have been proposed including PLSI [15], LDA [5],
and their extensions [14, 4]. Topic models have been utilized
in topic discovery, document classification, citation analysis,
and social network analysis. Our work exploits topic model-
ing in a new application, and is particularly unique in that
it trains LDA with a weekly supervised learning method.
There are several methods proposed for performing super-

vised learning of topic models [26, 17, 22]. In WS-LDA, we
include weak supervision information as soft constraints in
the objective function.

3. OUR APPROACH TO NERQ

3.1 NERQ Problem
Named Entity Recognition in Query (NERQ) is a task

defined as follows. Given a query, we try to detect the named
entities within query and categorize the named entities into
classes. The classes are from a predefined taxonomy.

We have conducted a manual analysis on 1,000 unique
queries randomly selected from the search log of a commer-
cial web search engine. It indicates that named entities ap-
pear very frequently in queries and about 70% of the queries
contain named entities. Furthermore, if a named entity oc-
curs in a query, usually only that single named entity occurs
and less than 1% of the queries contain two or more named
entities. (In this paper, we focus on single-named-entity
queries and take the processing of multiple named-entity
queries as future work).

Queries tend to be short (i.e., 2-3 words on average) and
not well formed. It makes NERQ a challenging task. In this
paper, we propose a probabilistic approach to the problem
using query log data.

3.2 Probabilistic Approach
A single-named-entity query q can be represented as triples

(e, t, c), where e denotes named entity, t denotes the context
of e in q, and c denotes the class of e. Note that t is fur-
ther expressed as α#β, where α and β denote the left and
right contexts respectively and # denotes a placeholder for
named entity. Either α or β can be empty (e.g. “# walk-
through”, “lyrics to #”), or both can be empty (i.e. “#”).
For example, for query “harry potter walkthrough” belong-
ing to Game, the associated triple is (“harry potter”, “#
walkthrough”, Game).

The goal of NERQ is to detect the named entity e in query
q, and assign the most likely class label c to e. Therefore,
it can be accomplished by finding the triple (e, t, c)∗ among
all possible triples, satisfying:

(e, t, c)∗ = arg max(e,t,c) Pr(q, e, t, c)

= arg max(e,t,c) Pr(q|e, t, c)Pr(e, t, c)

= arg max(e,t,c)∈G(q) Pr(e, t, c) (1)

In Eqn. (1), conditional probability Pr(q|e, t, c) represents
how likely query q is generated from triple (e, t, c). Note that
given a triple, it will uniquely determine a query. There-
fore, for fixed query q and triple (e, t, c), Pr(q|e, t, c) can
only be one or zero. That is, there are only two possibil-
ities: either (e, t, c) generates q or (e, t, c) does not gener-
ate q. For instance, query “harry potter walkthrough” can
be generated by (“harry potter”, “# walkthrough”, ∗), but
not (“halo 3”, “# walkthrough”, ∗). We define G(q) as the
set containing all possible triples that can generate query q
(i.e., Pr(q|e, t, c) equals one). Thus, the triple having largest
probability (e, t, c)∗ must be in G(q).

Therefore, to conduct NERQ we only need to calculate
the joint probability Pr(e, t, c) for each triple in G(q), which
can be further factorized as below:

Pr(e, t, c) = Pr(e)Pr(c|e) Pr(t|e, c)
= Pr(e)Pr(c|e) Pr(t|c) (2)



In Eqn. (2), we assume that Pr(ti|c) = Pr(ti|c, ei), that is,
context only depends on class but not specific named entity.
This assumption largely reduces the parameter space and
thus makes the learning tractable. It is also a reasonable
assumption in practice because classes usually share com-
mon contexts, e.g., “Music” takes “# lyrics” and “# mp3”
as contexts. There are contexts specific to named entities.
However, due to data sparseness, one can hardly accurately
estimate the probabilities of them.

The problem then becomes how to estimate Pr(e), Pr(c|e)
and Pr(t|c). The number of such probabilities is extremely
large, because there are an extremely large number of named
entities and contexts. These include variants of named en-
tities like “harry potter 6” and “harry potter and the half-
blood prince”, and variants of contexts like “# lyrics”, “lyrics
to #”, and even typos “# lyrix”.

3.3 Topic Model for NERQ
Suppose there is a training data set available, which con-

tains triples from labeled queries T ={(ei, ti, ci)|i=1, . . . , N},
where (ei, ti, ci) denotes the “true” triple for query qi and N
is the data size. Therefore, the learning problem can be
formalized as:

max

N∏
i=1

Pr(ei, ti, ci) (3)

If each named entity only belongs to one class, we can
build the training data T easily (e.g., using the method in
[19]). However, in reality named entities are usually am-
biguous, e.g., “harry potter” can belong to classes “Book”,
“Movie”, and “Game”. It would be difficult as well as time-
consuming to manually assign class labels to named entities
in queries. Therefore, we collect training data T = {(ei, ti)},
and view class label ci as hidden variable. We also know
the possible classes of each named entity in training. The
learning problem with respect to the new training data T =
{(ei, ti)} becomes:

max
N∏

i=1

Pr(ei, ti)=max
N∏

i=1

Pr(ei)
∑

c

Pr(c|ei)Pr(ti|c) (4)

In Eqn. (4), Pr(ei) represents the popularity of named
entity ei, Pr(c|ei) represents the likelihood of class c given
named entity ei, and Pr(ti|c) represents the likelihood of
context ti given class c. The prior probability Pr(ei) can
be estimated in different ways, independent of Pr(c|ei) and

Pr(ti|c). Suppose it is estimated as P̂r(ei), then Eqn. (4)
becomes:

max
N∏

i=1

P̂r(ei)
N∏

i=1

∑
c

Pr(c|ei) Pr(ti|c) (5)

In this way, the learning problem becomes that of learning
the probabilities in Eqn. (5), which form a topic model. In
the topic model, a named entity corresponds to a document,
contexts of a named entity correspond to words of the doc-
ument, classes of a named entity correspond to topics of the
model. Without loss of generality, we choose LDA as topic
model in this paper. The topic model also has some special-
ties. The topics (or classes) in the topic model are prede-
fined and the possible topics of each document are given in
training.

3.4 Implementation
In this section, we explain how to use the topic model and

query log to build a NERQ system. The processing consists
of two stages, offline training and online prediction.

3.4.1 Offline Training
The offline training process is a combination of learning

algorithm and data mining technique. There are two steps:
(1) We first select some named entities as seeds, and assign

possible classes to each of them. There might be multiple
classes for each named entity. Note that the effort in this
labeling is limited, since we only need to label a small num-
ber of named entities (not queries). Then we scan the query
log with the seed named entities and collect all the queries
containing them. In this way, we can generate the training
data (ei, ti) and learn a topic model with regard to the seed
named entities. There is a significant difference between
conventional topic modeling and the learning here. First,
the hidden topics (or classes) are predefined. Furthermore,
the possible topics (classes) of a document (named entity)
are given in weak supervision. We propose a method that
can conduct weakly supervised learning of topic model, re-
ferred to as WS-LDA (Weakly Supervised Latent Dirichlet
Allocation). We will introduce the details in the next sec-
tion. After this step, we obtain the estimated probabilities
Pr(c|e) for each seed named entity as well as Pr(t|c) for each
class.

(2) We scan the query log again with the previously learned
contexts, collect all the queries containing the contexts, and
extract the remainder of these queries as new named entities.
(To ensure a high quality extraction, we heuristically make
a threshold cut-off in this process). Next, WS-LDA is em-
ployed to estimate Pr(c|e) for the newly extracted named en-
tities, with the probabilities Pr(t|c) fixed. The probabilities
Pr(e) for newly extracted named entities are also estimated
in this process. Specifically, we use the total frequency of
queries containing e in the query log to approximate Pr(e).
The more frequently named entity e occurs, the larger prob-
ability Pr(e) will be.

In this way, we can estimate all the probabilities we need,
that is, Pr(e), Pr(c|e), and Pr(t|c). We create an index for
the named entities and the classes, and store the estimated
probabilities for efficient online prediction. The detailed al-
gorithm for the offline training process is shown in Alg. 1.

3.4.2 Online Prediction
In online prediction, we try to find the most likely triples

in G(q) for a query q. We can generate G(q) by segment-
ing the query into named entity and context in all possi-
ble ways, and labeling segmented named entities with all
possible classes. For each triple (e, t, c) in G(q), the joint
probability Pr(e, t, c) is then calculated. The triples with
highest probabilities are output results for NERQ. The de-
tailed algorithm is shown in Alg. 2. The time complexity of
the algorithm is O(kn2), where k denotes number of classes
and n denotes number of words in a query. Since both k
and n are very small, the prediction can be conducted very
efficiently. We skip those queries which do not have named
entity and context stored in the index.

4. WS-LDA
The learning of topic model in our method for NERQ is a

new problem, since the topics in the model are predefined,



Algorithm 1 Offline Training Algorithm
Input: Repository of queries Q, set of classes C, set of seed named

entities S with their labels Cs, s ∈ S
Output: Context set T , class index IC , and named entity index IE

Variable: T∗ = context of named entity ∗,
E = pool of named entities

1: initialize IC ← ∅, IE ← ∅

2: T ← ∅

3: for all q ∈ Q do
4: for all s ∈ S do
5: if (q contains s) then
6: t← RemainderContext(q, s)
7: T = T ∪ t
8: update t’s information in Ts

9: end if
10: end for
11: end for
12: train topic model WS-LDA over (S, {Ts}s∈S, {Cs}s∈S)
13: store learned probabilities {Pr(t|c)}t∈T,c∈C into IC

14: E ← ∅

15: for all q ∈ Q do
16: for all t ∈ T do
17: if (q contains t) then
18: e← QueryRemainderEntity(q, t)
19: E = E ∪ e
20: update t’s information in Te

21: end if
22: end for
23: end for
24: cut off E to retain high quality named entities
25: for all e ∈ E do
26: estimate Pr(e) with Te

27: estimate {Pr(c|e)}c∈C with Te and learned WS-LDA
28: store (Pr(e), {Pr(c|e)}c∈C) in IE

29: end for
30: return (T, IC , IE)

Table 1: Relationship between Notions
Query Document Symbol
Context Word wn

Named entity Document w
Class Topic zn

and the possible topics of document are given. We propose a
new method for learning topic model, WS-LDA (Weakly Su-
pervised Latent Dirichlet Allocation). WS-LDA is a general
method and can be used in other applications.

For readability, we use conventional notations for docu-
ment processing to describe the topic model. Specifically,
contexts become “words”, contexts of a named entity form a
“document”, and classes of named entity correspond to “top-
ics”. Suppose that we have named entity“harry potter”with
classes “Movie”, “Book”, and “Game”, and find three queries
containing “harry potter” in the query log, “harry potter
movie”, “harry potter walkthrough”, and “harry potter re-
view”. Then the document with respect to “harry potter”
will contain three words, i.e. “# movie”, “# walkthrough”,
and “# review”, and the topics of the document will be
“Movie”, “Book”, and “Game”. The relationship between
query data and document data is summarized in Table 1.

Accordingly, we can rewrite the topic model in Eqn. (5)
in the following form for better understanding:

∏
e

∏
{i|e=ei}

∑
c

Pr(c|ei)Pr(ti|c) (6)

where e denotes a unique named entity in training data.
Please note that P̂r(ei) is dropped for clarity, and it can
be easily integrated into the model. The first product in
Eqn. (6) is on all the unique named entities in the training
data (document level product), and the second one is on all
the contexts of the same named entity (word level product).

Algorithm 2 Online Prediction Algorithm
Input: Query q = w1w2 . . . wn, a set of classes C, context set T ,

named entity index IE and class index IC

Output: Top K recognition results R
1: initialize R← ∅

2: for i = 1 to n do
3: for j = i to n do
4: e← wiwi+1 . . . wj

5: t← w1w2 . . . wi−1#wj+1wj+2 . . . wn

6: if (e ∈ IE and t ∈ T ) then
7: for all c ∈ C do
8: r ← new recognition
9: r.triple← {e, t, c}

10: compute Pr(e), Pr(c|e),Pr(t|c) using IE and IC

11: r.prob← Pr(e) Pr(c|e) Pr(t|c)
12: R.push(r)
13: end for
14: end if
15: end for
16: end for
17: sort R by prob
18: truncate R to size K
19: return R

4.1 Model
We first give the definition of the model in WS-LDA,

which is the same as the conventional LDA. Suppose there
is a corpus of M documents D = {w1, ..., wM} sharing K
topics, and each document is a sequence of N words denoted
by w = {w1, ..., wN}. It is assumed that the documents w
in the corpus D are generated by the following generative
process:

1. Draw topic distribution θ ∼ Dirichlet(α)

2. For each word

(a) Draw topic assignment zn ∼ Multinomial(θ)

(b) Draw word wn ∼ Multinomial(βzn
), a multino-

mial distribution conditioned on topic zn

Given parameters Θ = {α, β}, we obtain the probability
distribution of a document:

p(w|Θ)=

∫
p(θ|α)(

N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, β))dθ (7)

Finally, taking the product of probabilities of documents,
we obtain the probability of corpus:

p(D|Θ)=
M∏

d=1

∫
p(θd |α)(

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β))dθd

4.2 Weak Supervision
In NERQ, employing an unsupervised learning method to

learn the topic model would not work. This is because the
topics (classes) are explicitly predefined in NERQ. In con-
trast, the topics in a conventional topic model are implicit
and are automatically learned. There is no guarantee that
the hidden topics learned by unsupervised learning method
will be aligned with the predefined topics (classes). There-
fore, we need to introduce supervision in the training process
of the topic model.

The supervision is from the manual class labels on each
seed named entity. The labels are not exclusive because
ambiguity exists in named entities. For example, “harry
potter” may have three classes, i.e. “Movie”, “Book”, and
“Game”. We only ask human judges to make a judgment
on whether a named entity can belong to a class or not.
(It would be extremely hard for human judges to decide a



probability of a named entity’s belonging to a class.) This
type of labels is viewed as weak supervision for training.
That means, in the terminology of topic modeling, we only
assume that a document has high probabilities on labeled
topics, but very low probabilities on unlabeled topics.

4.2.1 Objective Function
Given document w, the assigned class labels are repre-

sented as y = {y1, ..., yK}, where yi takes 1 or 0 when the
i-th topic is or is not assigned to the document, and K de-
notes the number of topics. The weak supervision informa-
tion will be used as soft constraints in the objective function.
WS-LDA tries to maximize the likelihood of data with re-
spect to the model, and at the same time satisfy the soft
constraints. The constraints are defined as follows.

C(y, Θ) =
∑K

i=1 yiz̄i (8)

Here we let z̄i = 1
N

∑N
n=1 zi

n, where zi
n is 1 or 0 when the i-th

topic is or is not assigned to the n-th word. That is to say,
z̄i represents the empirical probability of the i-th topic in
document w. As we can see, maximizing the soft constraints
actually can meet the following two goals at the same time:
(1) the i-th latent topic is aligned to the i-th predefined
class; and (2) the document w is mainly distributed over
labeled classes.

Specifically, the objective function with respect to a doc-
ument is defined as follows.

O(w|y, Θ) = log p(w|Θ) + λC(y, Θ) (9)

where likelihood function p(w|Θ) and soft constraint func-
tion C(y, Θ) are represented as in Eqn. (7) and (8) respec-
tively, and λ is coefficient. If λ equals 0, WS-LDA learning
will degenerate to LDA learning.

Finally, substituting Eqn. (7) and (8) into Eqn. (9) and
taking the sum over all documents, we obtain the following
total objective function:

O(D|Y, Θ) =
M∑

d=1

O(wd |yd , Θ)

=

M∑
d=1

log

∫
p(θd |α)(

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β))dθd

+
M∑

d=1

λ
K∑

i=1

ydiz̄di (10)

4.2.2 Algorithm
WS-LDA is equivalent to maximizing the objective func-

tion in Eqn. (10). However, there might be no analytic
solution for the problem as in conventional LDA learning.
Therefore, we employ a variational method similar to that
in [5] to approximate the posterior distribution of the latent
variables. The approximate distribution is characterized by
the following variational distribution:

q(θ, z|Λ) = q(θ|γ)
∏N

n=1 q(zn|φn)

where Λ = {γ , φ1:N} are variational parameters. Specifi-
cally, γ is Dirichlet parameter and φ1:N are multi-nominal
parameters.

Therefore, the objective function for a single document
can be derived as follows.

O(w|y, Θ) = L(Λ;Θ)+ D(q(θ, z|Λ)||p(θ, z|w, Θ)) (11)

where

L(Λ;Θ) =

∫ ∑
z

q(θ, z|Λ) log
p(θ, z, w|Θ)

q(θ, z|Λ)
dθ

+

∫ ∑
z

q(θ, z|Λ)λC(y, Θ)dθ

Minimizing the KL divergence between the variational
posterior probability and the true posterior probability, de-
noted as D(q(θ, z|Λ)||p(θ, z|w, Θ)), gives a good approxi-
mate distribution of p(θ, z|w, Θ). From Eqn. (11) we can
see, this is equivalent to maximizing the lower bound L(Λ; Θ)
on the objective function O(w|y, Θ) with respect to Λ which
has the form

O(w|y, Θ)≥L(Λ;Θ)

=Eq[log p(θ|α)]+Eq [log p(z|θ)]+Eq [log p(w|z, β)]

−Eq[log q(θ)] − Eq[log q(z)] + Eq[λC(y, Θ)]

Let βiv be p(wv
n = 1|zi = 1) for word v. Each of the above

terms can be expressed in the following equations (12)∼(17):

L(Λ;Θ)= log Γ(
∑K

j=1 αj) − ∑K
i=1 log Γ(αi)

+
∑K

i=1(αi − 1)(Ψ(γi) − Ψ(
∑K

j=1 γj)) (12)

+
∑N

n=1

∑K
i=1 φni(Ψ(γi) − Ψ(

∑K
j=1 γj)) (13)

+
∑N

n=1

∑K
i=1

∑V
v=1 φniw

v
n log βiv (14)

− log Γ(
∑K

j=1 γj) +
∑K

i=1 log Γ(γi)

− ∑K
i=1(γi − 1)(Ψ(γi) − Ψ(

∑K
j=1 γj)) (15)

− ∑N
n=1

∑K
i=1 φni log φni (16)

+
λ

N

∑N
n=1

∑K
i=1 yiφni (17)

Notice that

Eq[z̄i] = Eq[
1

N

N∑
n=1

zi
n] =

1

N

N∑
n=1

Eq[z
i
n] =

1

N

N∑
n=1

φni

is used for the derivation of the term (17).
A variational expectation-maximization (EM) algorithm

is then employed to estimate the model parameters Θ.
E-step:

γi = αi +
∑N

n=1 φni

φni ∝ βiv exp(Ψ(γi) − Ψ(
∑K

j=1 γj) + λ
N

yi)

M-step:

βij ∝
∑M

d=1

∑Nd
n=1 φdniw

j
dn

Dirichlet parameter α can be updated in the M-step by
using an efficient Newton-Raphson method in which the in-
verted Hessian can be computed in linear time.

4.3 Prediction
WS-LDA is also used in prediction. Specifically, we cal-

culate the probability Pr(c|e) for unseen named entities in
NERQ. This corresponds to estimating the probability of
topic given a new document w with the already estimated
model Θ. The estimation is then equivalent to approximat-
ing the posterior topic distribution θ of the new document
w using the variational inference procedure. Notice this is
the same as variational inference in conventional LDA (cf.,
[5]).



5. EXPERIMENTAL RESULTS
We conducted experiments to verify the effectiveness of

NERQ using WS-LDA. In this section, we first introduce
the data sets used in experiments. Then we demonstrate
the effectiveness of our approach in NERQ. Finally, we com-
pare our method of NEQR using WS-LDA with two base-
line methods, the deterministic approach proposed in [19],
referred to as Determ, and conventional LDA (unsupervised
learning), referred to as LDA. Note that although LDA is
viewed as a baseline, there was no previous work on using
LDA in NERQ. In the experiments λ was set to 1 by default.

5.1 Data Set
We made use of a real data set consisting of over 6 billion

queries, in which the number of unique queries is 930 million.
The queries were randomly sampled from the query log of a
commercial web search engine.

Four semantic classes were considered in our experiments,
including “Movie”, “Game”, “Book”, and “Music”. Based on
these classes, 180 named entities were selected from the web
sites of Amazon, GameSpot, and Lyrics. Four human anno-
tators labeled the classes of the named entities. If there was
a disagreement among the annotators, we took a majority
voting. Multiple classes can be assigned to one named en-
tity. The annotated data was further divided into a training
set containing 120 named entities and a test set containing
60 named entities.

The data set has the following characteristics. First, the
overlap ratios between classes vary according to class pairs,
e.g. the “Movie” and “Game” classes as well as the “Movie”
and “Book” classes have higher overlap ratios (≥ 20%). It
seems natural because a movie is often adapted from a book
with the same title, or a game is often inspired by a movie
and named after the movie. Second, the selected classes
differ from one another in terms of frequency in query log,
e.g. named entities in “Movie” and “Game” classes occur
more frequently than in “Book” and “Music” classes.

Starting from the 120 seed named entities, we trained a
WS-LDA model for conducting NERQ. Specifically, we ex-
tracted all the possible contexts of seed named entities, and
created a WS-LDA model as described in Sections 3 and 4.
Finally we obtained 432,304 contexts and indexed about 1.5
million named entities.

5.2 NERQ by WS-LDA
We conducted NERQ on queries from a separate query

log, which consists of about 12 million unique queries, and
obtained about 0.14 million recognition results. We ran-
domly sampled 400 queries from the recognition results for
evaluation. Table 2 gives some examples from the data set
and Table 3 shows the number of queries in the data set
grouped by the predicted classes of named entities.

Each recognition result was then manually labeled as“cor-
rect” or “incorrect”. A result is viewed as correct if and only
if both the detection and classification of the named entity
are correct. The performance of NERQ is evaluated in terms
of top N accuracy. “Top N accuracy” here is defined in the
following way: an algorithm output will be considered “cor-
rect” if at least one of top N results is labeled as “correct”.

Fig. 1 shows the accuracy of our NERQ method in terms
of top N accuracy. “Overall” stands for the average perfor-
mance of NERQ over all classes. From Fig. 1 we can see
that the overall top 1 accuracy is 81.75% which is reason-
ably good. When we consider the top 3 results, we can even

Table 2: Example Queries
pics of fight club braveheart quote
watch gladiator online american beauty company
12 angry men characters mario kart guide
pc mass effect crysis mods
mother teresa images condemned screenshots
4 minutes lyric king kong
the black swan summary blackwater novel
new moon rehab the song
nineteen minutes synopsis umbrella chords
all summer long video girlfriend lyrics

Table 3: Statistics on Sampled Recognition Results
Movie Game Book Music

Num. of queries 111 108 82 99

make the overall accuracy reach 97.5%. Fig. 1 also shows
the performances of NERQ in different classes. From the re-
sults we can see that our method of NERQ using WS-LDA
is effective in each class.

We further made error analysis on our NERQ results.
There were mainly three types of errors. (1) Errors were
mainly caused by inaccurate estimation of Pr(e). It seems
that the current way of estimating Pr(e) has certain bias,
which prefers the segmentation with a shorter named entity.
We may reduce such kind of errors by employing a better
estimation method. (2) Some contexts were not learned in
our approach since they are uncommon. For example, in
the query “lyrics for forever by chris brown”, “forever by
chris brown” was recognized as a “Music” named entity and
“lyrics for #” the context. Ideally, “forever” should be recog-
nized as named entity of “Music”, and “lyrics for # by chris
brown” as context. However, since the context “lyrics for #
by chris brown” is quite specific, it was not covered by our
learning method. Some of such errors may be eliminated by
using more seed named entities. (3) Some queries contained
the named entity out of predefined classes. For example, in
query “american beauty company”, “american beauty” was
incorrectly recognized as a movie name. Since “american
beauty” was indexed as a movie name and “# company”
was as a common context, our NERQ system may occasion-
ally make such kind of errors. We may reduce them when
we utilize more classes.

5.3 WS-LDA v.s. Baselines
We performed experiments to make comparison between

the WS-LDA approach and two baseline methods: Determ
and LDA. Note that the main difference of these approaches
lies in different assumptions and ways for modeling the re-
lationship between named entity, context, and class.

Determ learns the contexts of a certain class by simply ag-
gregating all the contexts of named entities belonging to that
class. It can perform very well when a named entity only be-
longs to a single class. In contrast, LDA and WS-LDA take
a probabilistic approach and handle the ambiguity of named
entities. However, LDA is based on unsupervised learning,
and thus cannot ensure the alignment between latent classes
and predefined classes.

5.3.1 Modeling Contexts of Class
We first compared the learning of contexts of each class

between WS-LDA and two baselines. Table 4 shows the top
ranked contexts of each class according to Pr(t|c) generated
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Figure 1: NERQ Top N Accuracy on Test Data(%)

by WS-LDA approach and baselines. From the results we
can see that the quality of the top ranked contexts generated
by Determ is not high. Take the “Movie” class as example,
its top ranked contexts are mixed with the contexts of the
“Game” class, e.g. “# games” or “free online # games”. The
reason is that there are many named entities belonging to
both “Movie” and “Game” classes. However, Determ ignores
the ambiguity and forcibly merges all the contexts of such
named entities together. The results indicate that by taking
a probabilistic approach, we can improve the quality of the
learned contexts. Among the two topic model approaches,
WS-LDA achieves better results than LDA, because it can
leverage human supervision. Note here manual class align-
ment is performed to make it a fair comparison with LDA.

We further looked at the accuracy in ranking named en-
tities by WS-LDA and Determ. In Determ, all the con-
texts of a class are called the signature of the class. Candi-
date named entities can then be ranked in each class based
on the Jensen-Shannon similarity score [19] between all the
contexts of the named entity and the signature of the class.
For comparison, top 250 named entities ranked in each class
generated by Determ and WS-LDA were evaluated. Each
named entity was manually labeled as “correct” or “incor-
rect” regarding to class. In total, 2,000 named entities for
the four predefined classes were annotated. We used “pre-
cision at rank N” [19] as the measure and obtained the re-
sults in Table 5. The results show that WS-LDA can sig-
nificantly outperform Determ (p-value<0.01). The results
demonstrate that WS-LDA can learn the contexts of classes
better than Determ.

5.3.2 Class Prediction and Convergence Speed
We next evaluated the accuracies of estimated probabili-

ties Pr(c|e) in LDA and WS-LDA on the test data (i.e., 60
named entities). The overall class likelihood with respect

to named entity e is calculated as
∑K

i=1 yi Pr(ci|e), where
yi takes 1 or 0 when the i-th class is or is not assigned
to e. The overall class likelihood measures how consistent
the machine predictions are with human labels. Fig. 2(a)
shows the results by LDA and WS-LDA over different runs
in testing. The results indicate that WS-LDA significantly
outperforms LDA. The average likelihood obtained by LDA
is about 34.89, while the average likelihood obtained by WS-
LDA is about 53.39. Here to avoid inaccurate manual class
alignment in LDA, we enumerate K! possible alignments for
LDA in each run and take the highest score as its result.
It can be considered as the upper-bound of LDA. As shown
in Fig. 2(a), the performance of LDA is quite unstable. It
might be also related to the “local maximum” problem of
LDA [5]. In contrast, WS-LDA model does not seem to
suffer from the problem and can constantly produce high
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Figure 2: Comparisons between WS-LDA and LDA
on (a) Overall Class Likelihood on Testing Set, (b)
Convergence Speed on Training Set

Table 6: Average Class Likelihood on Testing Set
v.s. Coefficient λ

Coefficient λ 0.01 0.1 1 10 100
ACL 20.92 35.92 53.39 53.22 53.08

accuracy in prediction.
We also found that the convergence speed of training for

WS-LDA is much faster than that for LDA. Fig. 2(b) shows
numbers of iterations needed for convergence for the two
methods. The average convergence speed of WS-LDA is 3
times faster than that of LDA. It might be due to the reg-
ulation from the soft constraint which makes the parameter
space much smaller.

5.4 Supervision in WS-LDA
We also tested how the coefficient λ (weight on soft con-

straints) affects the performance of WS-LDA. We set λ with
different values from 0.01 to 100 and ran 10 trials under each
setting. Table 6 shows the average class likelihood values on
the testing set under different values of λ. The results indi-
cate that increasing λ will help WS-LDA to predict class la-
bels more accurately. It demonstrates the necessity of using
the supervision in learning and the capability of WS-LDA in
utilizing the information. While λ is small, the average class
likelihood is unsurprisingly close to that of LDA. Moreover,
when λ continues to increase, the convergence speed will de-
crease and the performance will drop. This is because the
supervision is over emphasized.

6. CONCLUSIONS
Named Entity Recognition in Query (NERQ) is poten-

tially useful in many applications in web search. We have,
for the first time, investigated the problem in this paper, and
proposed employing a probabilistic approach to perform the
task using query log and a topic model. We have proposed
a new weakly supervised learning method for creating the
topic model called WS-LDA, in which the topics of a doc-
ument are assigned. Experimental results indicate that the
proposed approach can accurately perform NERQ, and out-
performs other baseline methods.

There are several issues which we plan to address in the
future. In this paper, we have verified the effectiveness of
our method in experiments in which there are only a small
number of classes. We plan to add more classes and conduct
the experiments. The proposed method focuses on single-
named-entity queries. We want to design a more general
model to handle more complicated queries.



Table 4: Comparisons on Learned Contexts of Each Class
Movie Game

Determ LDA WS-LDA Determ LDA WS-LDA
lego # # movie # movie # cheats # games # games
# games # wallpaper # photos # movie # cheats # cheats
# wallpaper # movies # soundtrack # games # wallpaper lego #
# characters lego # # pics # cheat codes lego # # download
# toys # games # movies # the movie # download # wallpaper
# movie # cast # the movie # wallpaper # online play # online
# pictures # imagesize large # wallpaper # download play # online # online
free online # games # game # cast play # online # cheat codes # cheat codes
free # games # video # pictures # game # game # game
new # movie # trilogy # imagesize large # logo new # movie download #

Book Music
Determ LDA WS-LDA Determ LDA WS-LDA
# movie # summary # summary # lyrics # lyrics # lyrics
# soundtrack # book # book # movie # film # video
# book # review # review # photos # video # song
movie # # film # synopsis # film # song lyrics #
# quotes # synopsis summary of # # song # star lyrics to #
# imagesize large # star book # # pics # director lyrics for #
# dvd # director # quotes # soundtrack lyrics # # song lyrics
# review summary of # # reviews # video lyrics to # # l
# trailer book # # video # star lyrics for # # quotes
# the book # quotes # author # cast # song lyrics lyrics of #

Table 5: Comparisons on Learned Named Entities of Each Class (P@N)
Movie Game Book Music Average-Class

Determ WS-LDA Determ WS-LDA Determ WS-LDA Determ WS-LDA Determ WS-LDA
P@25 0.92 1 0.98 1 0.84 1 0.96 1 0.92 1
P@50 0.9 1 0.96 1 0.82 1 0.92 1 0.905 1
P@100 0.85 1 0.93 0.98 0.79 0.98 0.89 1 0.865 0.99
P@150 0.82 1 0.92 0.953 0.767 0.98 0.833 1 0.835 0.983
P@250 0.724 0.988 0.896 0.928 0.732 0.968 0.76 0.984 0.778 0.967
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